SYNERGISM OF METHYL BROMIDE TOXICITY AGAINST TERMITES BY ADMIXTURE WITH CARBON DIOXIDE

Rudolf H. Scheffrahn, Gregory S. Wheeler, and Nan-Yao Su University of Florida, Ft. Lauderdale Research and Education Center, 3205 College Avenue, Ft. Lauderdale, Florida 33314

The toxicity of methyl bromide in combination with carbon dioxide (CO₂) was assessed in laboratory exposures against pseudergates ("workers") of the southeastern drywood termite, <u>Incisitermes snyderi</u> (Light), and workers of the Formosan subterranean termite, Coptotermes formosanus Shiraki. Estimates of lethal accumulated doses (LAD, 20hour exposure at 27°C) of methyl bromide for 99% mortality against <u>I</u>. <u>snyderi</u> were 50, 37, 28, and 28 mg·h/l at 0, 5, 10, and 20% CO_2 (v/v), respectively. LAD₉₉ values against C. formosanus with methyl bromide were 38, 32, 24, and 24 mg'h/l at 0, 5, 10, and 20 $^{\circ}$ CO₂, respectively (Table 1). general, CO2 enhanced the toxicity of methyl bromide against I. snyderi more than against C. formosanus. Based on LADqq values against I. snyderi, a maximum synergism ratio (SR) of 1.8 was induced by CO_2 in admixture with methyl bromide at 10 or 20% CO_2 . For <u>C</u>. formosanus, the maximum SR at the LAD₉₉ was 1.6 at both 10 and 20% CO_2 . These results indícate that the application rates of methyl bromide can be significantly reduced by the simultaneous addition of 10% CO, into fumigated airspace.

The mode of action of low levels (≤ 20 %) of CO₂ as a fumigant synergist is uncertain and probably multidimensional although enhancement of respiration rate plays a likely role. In practical terms, a 10% v/v (176 mg/l) CO2 airspace load would require the addition of about 106 kg of CO₂ to a typical 600 m³ structure. Given a reasonable gas half-loss time of 10 hours, the mean CO2 concentration for a 20 hour fumigation would be about 5.6%. The addition of 2.4 kg (4 mg/l) of methyl bromide under these same conditions would yield an accumulated dose of about 45 mg'h/l (= 45 ounce-hours). Our results indicate that, at an exposure temperature of 27°C, this hypothetical fumigation would be successful for both termite species. Upward adjustments from the 4 mg/l rate would be necessary at lower temperatures, shorter exposure periods, shorter half-loss times (i.e. poor seal), or unusual structural conditions. Likewise, reverse conditions would allow for efficacious rates below 4 mg/l (= 4 ounces/1,000 ft 3).

51 - 2

Table 1. Toxicity $(mg^{\circ}h/1)$ of methyl bromide in admixture with CO_2 against \underline{I} . snyderi and \underline{C} . formosanus after 20-h exposure at 27°C.

Carbon Dioxide % (v/v)		Daya	LAD ₅₀ b (95% FL)	LAD ₉₅ b (95% FL)	LAD ₉₉ b (95% FL)	Synergism Ratios		
	n					LAD ₅₀	LAD ₉₅	LAD ₉₉
	<u></u>			I. snyderi				
0	120	7	40.2a (38.1-41.3)	47.1a (45.3-51.9)	50.3a (47.5-58.5)	1.0	1.0	1.0
5	120	11	24.5b (23.5-25.8)	33.0b (29.8-42.0)	37.2a (32.5-52.0)	1.6	1.4	1.4
10	120	7	24.5b (24.1-24.9)	27.1c (26.4-28.3)	28.2b (27.3-30.0)	1.6	1.7	1.8
20	120	11	23.7c (22.0-23.3)	26.4c (25.4-28.2)	28.1b (26.6-30.8)	1.7	1.8	1.8
				C. formosanus	<u> </u>			
0	240	8	33.1a (32.6-33.5)	36.4a (35.6-37.5)	37.9a (36.9-39.5)	1.0	1.0	1.0
5	240	11	25.7b (24.3-27.5)	30.0a (27.9-38.1)	32.0ab (29.2-44.3)	1.3	1.2	1.2
10	240	10	17.7c (16.7-18.7)	22.2b (20.6-26.2)	24.4b (22.1-30.5)	1.9	1.6	1.6
20	240	10	19.2c (18.4-20.1)	22.2b (21.0-25.5)	23.6b (22.0-28.3)	1.7	1.6	1.6

a Day at which latent mortality had ceased.

b LAD, lethal accumulated dose (mg·h/liter) values within a column and fumigant followed by the same letter are not significantly different due to 95% FL overlap.